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A theory of the generation of dispersive waves by travelling forcing effects, that 
may be steady, oscillatory or transient in character, is given for a general homo- 
geneous system. Small disturbances to the system are supposed stable, and 
governed by a linear partial differential equation with constant coefficients 
which admits solutions in the form of plane waves satisfying an, in general, 
anisotropic dispersion relation P((T, k) = 0 between frequency u and wave- 
number vector k. 

If the forcing region, supposed of limited extent, travels with constant velocity 
U, then oscillatory forcing terms of frequency uo (which would be replaced by 0 
in the limiting case of a steady forcing effect, while taking, for a typical transient 
one of duration T, values from 0 to about 10/T) produce waves of frequency 
o0 + U . k (the Doppler effect). For any such waves, the wave-number k satisfies 
the equation P(uo + U. k, k) = 0, representing a surface in wave-number space 
here called #(uo), and their position relative to that of the forcing region is deter- 
mined by having been generated when that region was in an earlier position, and 
having subsequently progressed with the group velocity. This implies the rule, 
also derived analytically in $82 and 3 ,  that waves with a particular value of k 
on &'(go) are found in a direction, stretching out from the forcing region, which is 
one of the directions normal to #(cro) at  k, namely the one pointing towards 
X(uo + 6). This rule is supplemented by results on wave amplitudes and shapes of 
crests. 

The theory is applied ($04 and 5 )  to Rossby waves excited in a beta-plane 
ocean by travelling patterns of wind stress. If a steady wind-stress pattern moves 
westward, semicircular waves of length 2n ,I( VIP) trail behind it, but signals are 
found also directly ahead, consisting of the disturbance integrated in the west- 
east direction and subjected to a 'low-pass filter' with respect to its north-south 
components of wave-number. An eastward-travelling pattern, by contrast, 
produces only a wake-like disturbance, calculated in detail in $4. The waves 
generated for intermediate directions of travel are identified, and the strong 
tendencies in all cases for westward intensification of transient currents are noted. 

For example, a wind-stress pattern travelling 30" N. of E. leaves a trailing 
wedge of currents from W. to 30" S. of W. in the steady case. The influence on 
this conclusion of a finite duration T of such a pattern is investigated in $ 5  by 
Fourier analysis in time. The fate of Fourier components of frequency go depends 
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on the ratio L = cr,/ J( U p ) .  If this is less than 1 for all (T, up to about 10/T, then 
the disturbance retains its trailing character; on the other hand, any components 
with L > 1 have a much greater directional spread. Tidal terms make fairly small 
changes to the results, except that (in an ocean of depth H )  they make the 
directional spread disappear for L greater than about J(PgHl4f U) .  

Excitation of gravity waves in non-rotating fluid is briefly considered, includ- 
ing generation on deep water by a travelling oscillating disturbance (96),  and 
generation in a uniformly stratified fluid by a vertically moving obstacle ( 5  7). 
The predicted wave shapes in the latter case, with cusps at a finite distance 
behind the obstacle, agree excellently (figures 7 and 8) with experiments by 
Mowbray (1966). 

An exceptional case, in that part of X(cr,) is doubly covered, is generation by 
steady (cro = 0 )  motion of an obstacle along the axis of uniformly rotating homo- 
geneous fluid, the surface S(0) being a sphere and two coincident planes. Whereas 
waves corresponding to points on the sphere trail behind the obstacle, the appro- 
priate normals on the two planes point in opposite directions inside the sphere 
( 9  8), permitting the well-known formation of the ‘Taylor column ’ ahead of the 
obstacle at low Rossby numbers. 

Still more complicated, because fully three-dimensional, is the case when the 
obstacle moves at right angles to the axis of rotation ( 9  9). At finite though small 
Rossby number it is impossible for the Taylor column formed near the body to  
extend to large distances from it, where on the contrary the disturbance is shown 
to take the form of slightly trailing cones, shown in cross-section in figure 12, 
containing waves whose crests have cusps on the boundaries of the cones. An 
estimate of the length of the Taylor column, as body dimension divided by Rossby 
number (for small enough kinematic viscosity), is made by considering the fit 
between the Taylor-column and wave-cone regions. 

1. Introduction 
This paper is concerned with a homogeneous system whose undisturbed con- 

dition is stable, and in which small disturbances are possible, taking the form of 
plane waves satisfying an, in general, anisotropic dispersion relation. Within 
region which is moving at constant velocity U through the system, a forcing 
process acts. The forcing function may be steady (independent of time), or oscil- 
late with a fixed frequency, or be zero for times t < 0 and a prescribed function of 
time for t > 0. In  all these cases the complex wave pattern generated by the 
forcing process is studied. 

The general theory is given in $92 and 3. The examples of its use which follow 
(994 to 9) are derived mainly from rotating fluid dynamics, forming a kind of 
continuation of the author’s recent survey of that subject (Lighthill 1966, here- 
after referred to as s). In rotating fluids, including the atmosphere and the oceans, 
many types of dispersive wave system are possible, and it is desirable to know 
how they can be excited by different forcing processes. Several possible forcing 
effects move relative to the fluid ; for example, when an atmospheric disturbance 
travels over an ocean which it is perturbing, or when a disturbance that is fixed 
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relative to the earth perturbs a wind blowing over it (in this case the disturbance 
is travelling relative to the air itself). 

Previous discussions of currents generated either by steady (S, $ 5) or transient 
(Longuet-Higgins 1965b) wind-stress distributions have taken their speed of 
travel over the ocean to be either zero or large compared with a typical group 
velocity. The discussion in $84 and 5 below shows, however, that the inter- 
mediate case is of great importance. In fact the velocity of travel of the forcing 
effect in relation to its characteristic frequencies and wave-numbers appears to 
be of dominant significance in this problem, just as in the problem of the sound 
radiated by travelling eddies in a turbulent jet (Lighthill 1963). 

Many problems involving forcing effects that are steady or of fixed frequency 
have been treated in the literature; for example the problem of $8 (motion of an 
obstacle along the axis of rotating fluid). Difficulties have often been experienced, 
however, because the ensemble of solutions vanishing at infinity is a vast one, 
and ad hoc methods of selecting the solution satisfying the ‘radiation condition’ 
at infinity have been of very variable simplicity and effectiveness. This paper 
points out ( $  2) the extremely simple general rule, easy to infer from published 
papers but not so well known as it ought to be, for specifying the wave pattern 
that this solution involves. 

A steady forcing effect may be so strong as to generate in its neighbourhood 
large disturbances not governed even approximately by the linear equations 
appropriate to small disturbances. The present theory can nevertheless be used 
to infer characteristics of the wave pattern set up far from the forcing region, 
where the disturbances are small enough for linear equations to apply. This is 
because the (admittedly unknown) non-linear terms in the equations which 
operate in the near field can be simply regarded as an additional forcing term 
whose region of application travels a t  the same speed. 

For example, a large steady disturbance moving slowly through an extended 
body of uniformly rotating fluid a t  right angles to the axis can generate locally 
a ‘Taylor column ’, but for non-zero Rossby number this cannot extend to infinity 
even in an inviscid fluid. In fact, the far disturbances must be small, and so take 
the form of inertial waves stationary with respect to the forcing disturbance. 
Their nature is worked out in $9, where some suggestions are made also about 
how they match with the near-field ‘Taylor-column ’ solution. 

In  addition, two problems in non-rotating fluids are considered. First, in $ 6, 
as a link with the classical Kelvin ship-wave problem, the waves generated on 
deep water by an oscillatory disturbance travelling at  speed U are studied. 
Results given by Eggers (1957) and others are confirmed, in opposition to in- 
correct predictions by Sretensky (1954), and subsumed within the general theory. 
It is shown that only oscillations of radian frequency less than 1.62gl U can pro- 
duce waves outside the normal ship-wave wedge. Secondly, in $7, the shape of 
gravity waves excited in a uniformly stratified fluid by a vertically moving 
steady disturbance are calculated, in good agreement (figure 8) with experiments 
by Mowbray (1966). 

, 
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2. General theory for steady or periodic forcing terms 
Consider a system such that small disturbances to the undisturbed state are 

governed by a linear partial differential equation with independent variables x, 
y, z and t and constant coefficients, which we write 

where P is a polynomial and g5 is some variable specifying the disturbance. Then 
a plane wave 

g5 = $,,exp{i( -aat+Zx+my+nz)} = cjoexp{i( -at+k.r)} 

P(a, I ,  m, n )  = 0 

(2) 

(3) 

can exist if the dispersion relation 

is satisfied. On the other hand, because the undisturbed state is assumed stable, 
no solution of (3) exists with 1, m, n real and the imaginary part of c positive. 

A forcing region is one where the right-hand side of (1)  is replaced by a non- 
zero 'forcing term', which may represent the action of external forces on the 
system, and may also include substantial terms non-linear in the solution g5 
wherever disturbances are not small. In  the forcing regions moving with uniform 
velocity U which this paper considers, steady forcing terms 

f ( r - Ut)  9 

e-igo y( r - Ut)  

(4) 

where r = (x, y ,  z ) ,  are of particular interest. Sinusoidally varying forcing terms 

( 5 )  

are also of interest, and to save writing the theory will be given in this section in 
the more general case ( 5 ) .  The reader is asked, however, to bear in mind con- 
tinually the specially important case co = 0. 

We suppose that f(r) = f ( x ,  y,z) vanishes outside a limited forcing region 
around the origin, and therefore can be written as a Fourier integral 

f (r) = /Im Iw F(k)eik.'dldrndn, ( 6 )  
--m 

where P(k) = P(Z, m, n) is a regular function for all I ,  m, n. The equation 

with (6) used to rewrite the right-hand side, then has the formal solution 

This solution is not unique, however, in any system for which plane wave 
solutions satisfying (3) exist, because the denominator can then vanish for real 
1, m, n, in which case many determinations of the integral (8) are possible. How- 
ever, only one is of physical significance, namely that obtained when the source 
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strength has been built up to its present strength from zero, and the system has 
reached its steady state. This is obtained, for example, by replacing go by go + is 
(which gives an extra factor ed in the forcing term (5) and also, because no cr with 
positive imaginary part satisfies (3), gives the integral (8) a determinate value) 
and then letting s tend to zero. We shall see in 5 3 that the same answer is obtained 
also if other modes of build-up of the forcing effect to its steady-state value are 
employed. 

Lighthill (1965, $7)  has given the method for evaluating integrals such as (8) 
a t  distances from the forcing region large compared with its dimensions, using 
methods described earlier by Lighthill (1960). The asymptotic form of 4, as 
defined by replacing go by go+is  in (8) and letting s+O, can be described as 
follows. 

In wave-number (I, m, n) = k space, at each point of the surface 

P(vo+U.k,Z,m,n) = 0 (9) 

on which the denominator of (8) vanishes, we draw an arrow normal to the sur- 
face, choosing from the two normal directions the one pointing towards the 
surface 

In other words, the arrow is in the direction CT increasing. Then the waves (if 
any) found in some particular direction stretching out from the forcing region are 
those with k = (1, m, n) given by a point (if any) on the wave-number surface (9) 
where the arrow i s  in that particular direction. Their amplitude is asymptotically 

(10) P(go + U .  k + 6, I ,  m, n) = 0 with 6 small and positive. 

where R = )r - Utl means distance from the forcing region, V is the operator 
grad with respect to k = (I, m, n) and K is the Gaussian curvature (product of 
principal curvatures) of the surface (9). 

More strictly, 4 is asymptotic to  (11) provided K $: 0, and falls off less rapidly 
than R-I if K = 0. For example, we shall be concerned in what follows with cases 
of purely two-dimensional propagation, where there is no dependence on z at all. 
The wave-number surface is then cylindrical (so that K = 0); and its intersection 
with the plane n = 0, which we shall call the wave-number curve, alone deter- 
mines the form of the waves generated. Equation (1 1) remains true with the f i s t  
factor replaced by ( Z n ) # / [ K [ * R + ,  where K is the curvature of the wave-number 
curve. As a second example, a plane portion of the wave-number surface generates 
waves without attenuation, the first factor in (1 1) being replaced simply by 2n. 
Other examples are given by Lighthill (1960). 

In  a direction such that more than one point of the wave-number surface (9) 
has the arrow pointing in that direction, waves corresponding to each such point 
can be found superimposed on one another. The amplitude of each separately is 
determined by the above rules. 

To explain physically the basic rule concerning the surface (9) and the arrows 
thereon, we note first that waves whose frequency is go relative to a forcing region 
moving at velocity U must have absolute frequency c0 + U . k (the Doppler 
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effect), and so their wave-number vector must lie on the surface (9).  Furthermore, 
the group velocity for waves satisfying (3) is 

Now, a t  time t = 0 when the forcing region is around the origin, the position of 
a wave group created earlier, at time t = -T  when it was around the point 
- UT, and propagating since then at the group velocity, must be 

V P  -UT-- a~ laa  T, 

which does indeed lie in the direction of the arrow defined above. 
Lighthill (1965), following Whitham (1960), gives also an interpretation of the 

amplitude variation (1 1). However, the only feature of this used below is the 
fairly obvious one, that waves will be generated corresponding only to those 
parts of the wave-number surface (9) for which the Fourier transform F(k) of 
the forcing term is not negligibly small. 

The shapes of wave-crests and other surfaces of constant phase can be deduced 
from the above rules (Lighthill 1960). Each is in fact the ‘reciprocal polar’ of 
the wave-number surface (9), that is, the locus of the poles of its tangent planes 
with respect to the origin. Analytically, it  is the locus of the points 

VP(uo + U .  k, k) 
A k .  VP(ao+ U .  k, k)’ 

where A is a constant. 
In the special case uo = 0 the surface (9) becomes 

P(U.k , l ,m,n)  = 0, (15) 

which may be interpreted as a statement that a steady forcing effect can generate 
only waves whose crests are stationary relative to the velocity of the forcing 
region. This physically plausible idea (which can also be expressed by saying that 
the component of the forcing region’s velocity in the direction of the phase 
velocity is exactly equal to the phase velocity) is proved to be of general validity 
by the present mathematical arguments. 

3. General theory for transient forcing terms 
Before giving examples of the results for steady or periodic forcing terms, we 

shall briefly obtain the corresponding results for a transient type of forcing term 
f(r - Ut, t),  wheref(r, t )  is zero for t < 0, and also, as in $2, is assumed zero out- 
side a limited region of space around the origin. Under these circumstances it can 
be written as a Fourier integral 

where 8 > 0 and F(u, k) has no singularities where the imaginary part of u is 
positive. 
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The formal solution corresponding to (8) when the right-hand side of (7 )  is 
replaced by f( r - U t ,  t )  is 

- (17) = e-iuldu F(g ,  k )  exp [ ik  . (r  - Ut)] dldmdn 
%€-a3 --m - w  - w  P(a + U .  k,  I ,  m, n)  

The asymptotic behaviour of (17) at large distances from the source will here be 
considered, first for a forcing term of finite duration and then in the case of one 
which becomes purely oscillatory after a finite time. 

Lighthill (1965, $6)  gave the solution for a source of finite duration, using the 
ideas of Lighthill (1960, appendix B) in a simplified form. The results willhhere 
be quoted in terms of the forms of the surfaces (9) for different values of the 
frequency r0. 

The waves (if any) of frequency c0 found in some particular direction stretching 
out from the forcing region are those with k = (I, m, n )  given by a point (if any) 
on the wave-number surface (9) for which the arrow is in that direction. Their 
amplitude is proportional to 

(18) 
q g o ,  I ,  m, 4 

R% ’ 

where R = Ir - Utl as before, and where the explicit form of the factor of pro- 
portionality depends like that in (1 1) on the geometry of the surfaces (9) but will 
not here be required. The energy density, which is proportional to the square of 
(18)) falls off like R-3 instead of like R-2 because dispersion makes a transient 
disturbance grow outwards as a wave group filling a region whose volume expands 
in all three of its dimensions. The position at which the waves are found at time 
t is given by t times the appropriate group velocity (12). 

This asymptotic result for the transient disturbance is derived from the 
singularities of the integrand in (17)) which for B = ro are on the surface (9). On 
the other hand, for a source whose action continues indefinitely, additional 
singularities can arise in the integrand, due to singularities in F itself. For 
example, if 

f (r , t )  = e-iuotf(r) 

meaning that the simple harmonic forcing term ( 5 )  is ‘switched on’ at time 
t = 0, then 

and this possesses a singularity at u = go. The asymptotic behaviour of (17) is 
then best obtained by first using the method of $ 2  for the inner integral (in which, 
as in $ 2, the imaginary part of B is +- e), after which integration with respect to 
B gives exactly the result of $ 2, because division by 2 7 r i ( ~  - c0) followed by 
integration replaces B by go. 

This means that we obtain asymptotically the same1steady-state solution, by 
suddenly switching on the source term (5) and waiting, as we did in $ 2 by allowing 
the strength to grow gradually from zero like eel. A much more general forcing 
term is the sum of (19) and an arbitrary source term of finite duration. This 
represents, indeed, a completely general forcing term starting from zero at time 
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t = 0 and becoming sinusoidal after a finite time. The solution in this case is the 
sum of the R-l term of $ 2  and the R-% term of (18). Ultimately the former 
dominates, and we once again receive the solution which satisfies the radiation 
condition as the limiting result after the source has for a long time assumed the 
sinusoidal form. 

Xummary of sections 2 and 3 

Sections 2 and 3 can be summarized by saying that the waves generated by 
forcing effects moving at velocity U are determined above all by the shapes of 
the surfaces S(ao) in wave-number space given by equation (9 ) .  Arrows normal to 
X(CT,) pointing in the direction of #(a, + 6) indicate in what direction stretching 
out from the source region waves of given frequency a, and wave-number 
(Z,m,n) will be found. But only those parts of #(a,) where the forcing term’s 
Fourier transform (P(k) for a steady disturbance or P(cr, k) for a transient dis- 
turbance) takes significant values will produce significant waves. In  directions 
corresponding to those parts, the surfaces of constant phase for an oscillating 
disturbance of frequency CT, have the shape of the reciprocal polar of the surface 
X(a0). 

4. Rossby waves excited by a travelling steady disturbance 
The method of this paper will first be applied to a travelling steady forcing 

effect generating Rossby waves in a ‘ beta-plane ocean’. Studies by Longuet- 
Higgins ( 1 9 6 4 , 1 9 6 5 ~ )  appear to indicate that waves in an ocean of uniform depth 
at  frequencies large compared with the Coriolis parameter can be approximated 
reasonably well by divergenceless Rossby waves on a beta-plane, although a still 
better approximation for the lower wave-numbers is obtained by including a 
tidal term in the dispersion equation (see also S, (46)); the effect of this term on 
the results will be noted at the end of the present section. 

Divergenceless Rossby waves on a beta-plane ( S ,  ( 3 6 ) )  satisfy 

where the x-direction is eastward and p is the gradient of Coriolis parameter in 
the northward y-direction. Multiplying (21)  by - i (for convenience) before 
comparison with (l) ,  we obtain for this two-dimensional system 

P ( a , l , m )  = a(Z2+m2)+Pl. (22 )  

A classic problem is the generation of Rossby waves by a steady westward- 
moving forcing effect. Such a means of excitement, relatively rare in the ocean, 
corresponds in the atmosphere to a commoner situation, generation by a steady 
eastward-moving wind blowing past a topographical feature. 

If the forcing effect moves with velocity ( - U ,  0 ) ,  then the wave-number curve 
X(O), given by equation (9) with a, = 0,  is 

- Ul(lz+m2)-t-/31 = 0 ,  (23) 

12+m2 = PlU. (24) 

which consists of the straight line 1 = 0 and the circle 
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t- 
FIGURE 1. Wave-number curve for Rossby waves generated on a beta-plane ocean by a 

steady forcing effect travelling westward, with velocity ( - 77, 0). 

The literature has laid particular emphasis on the waves (24), of uniform length 
277 J( U / p )  and arbitrary direction. 

But according to $2  it  is essential to study not only the wave-number curve 
X(O), here given by (23), but also the arrows normal to it pointing towards 
S( + S), the curve defined by P( - UE + 6, 1, m)  = 0. Now it is easy to show that 
the change in 2 (say) for fixed m in going from X(0) to S(6) for small 6 is asymp- 
totically (22 + m2) a/[ U(3Z2 + m2) - p], and hence that the required arrows are as 
in figure 1. This means that the waves satisfying (24), with circular wave-crests, 
trail to the east of the westward-moving disturbance, filling the eastward-facing 
hemisphere behind it. The physical explanation of this was given in S ,  Q 7. 

In  addition, disturbances with 1 and g zero, that is, independent of x and t ,  
are possible, with those whose meridional wave-number lml exceeds ,/(P/U) 
appearing behind the forcing region (that is, to the east), and those for which it 
is less appearing in front (to the west). Physically, this results from the rule due 
to Longuet-Higgins (1964) that the group velocity of Rossby waves makes an 
angle with the eastward direction twice that which the wave-number vector k 
makes, and is of magnitude P/rCz. For waves with 1 = 0, that is, with east-west 
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crests, the group velocity Plmz is westward (although the phase velocity is zero), 
and exceeds U if and only if 

Iml < (PIU)+. (25)  

These waves propagate (on the dissipationless model here used) without attenua- 
tion, because the associated part of the wave-number curve is a straight line. 
The disturbance that extends ahead (westward) of the obstacle is then the trans- 
verse disturbance created at the obstaclet modified by a 'low-pass filter' passing 

3Q" 

'1, \ 

30" \ o  
\ 

I 
-2 -1 

90" _ _ _ _ _ _  I... I - - 
/ I I  

150" 
/ 

120" 
_,*- 

,,-' 

FIGURE 2. Wave-number curves for Rossby waves generated on a beta-plane ocean by a 
steady forcing effect travelling with uniform velocity U in directions making positive 
angles a = 0", 30°, 60°, go", 120°, 150" and 180" (marked on the curves) with the eastward 
direction. Arrows are omitted on the m-axis, which both is the whole curve a = 0" 
(arrows westward only) and also is part of the curve a = 180" (arrows as in figure 1). 
- - - - - -, asymptotes. 

only wave-numbers below ,/(PI U ) .  The disturbance extending to the east of the 
obstacle has been subjected to the complementary high-pass filter. 

The situation with an eastward-moving steady forcing effect is much simpler. 
The sign of the first term in (23) being changed, the wave-number curve is merely 
the axis 1 = 0, and all arrows point to the west. There is therefore merely a long 

t Strictly speaking, after integration in the easewest direction, because the P(k)  term 
in (11) for I = 0 represents the integral off(r)  with respect to x from - co to co. 
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straight unattenuated disturbance trailing behind the forcing region to the west 
of it, exactly as found in the experiments of Fultz & Long (1951). 

Wave-number curves for steady forcing effects moving at an angle a measured 
in the positive sense from the eastward direction are given in figure 2 .  They 
satisfy U(1 cos a + msin a) (Z2  + m2) +Pl = 0. 

The point of inflexion of each curve at the origin, where the arrow points west- 
ward in every case, means that, whenever the forcing term has significant wave- 
number components in this region, a strong signal will be found to the west of 
the disturbance.t (It may be noted, for example, that amplitude attenuation of 
two-dimensional waves from such a point of inflexion is like R-3 instead of R-4.) 

Steady travelling forcing effects in general, then, excite disturbances to the 
west. Disturbances to the east will be excited only if the velocity of travel has a 
substantial westward component. This is rare in oceans in the temperate zones, 
which partly explains why fluctuations of current in the North Atlantic have 
often been observed to be much greater to the west than to the east (Swallow 
1961). 

It is of interest to calculate quantitatively the ocean movements in one par- 
ticularly simple but relevant case, a steady depression crossing the ocean from 
west to east. If the wind-stress per unit mass of water has east and north com- 
ponents X(x- Ut, y) and Y(x- Ut,  y )  respectively, then the rate of change of 
vertical vorticity due to wind stress is the wind-stress curl 

(26) 

and so the forcing term which must be added to the right-hand side of (21) is 
-c(x- Ut,y) (minus because the vorticity is -V2$). If C(1,m) is the Fourier 
transform of c(x,y), defined as in (6) but in two dimensions, then the formal 
solution for @ corresponding to (8) is 

We saw above that disturbances far from the forcing region are substantial 
only due west of it, where x - Ut is large and negative but y is not large. Estima- 
tion, either by the rule for plane portions of the wave-number surface given after 
equation (11)) or by direct asymptotic calculation of (28) (using the determina- 
tion obtained by replacing Ul by Ul+is and letting e + O )  gives that, as 
x- Ut+ -a, 

where to obtain (30) from (29) Parseval’s theorem has been used. 

t Figure 2 shows how, as the wave-number increases relative to J(/3/U), the direction 
in which the waves are found, measured in the positive sense from the westward direction, 
increases from 0 to a maximum just greater than a before falling to its final asympotic 
value a. 
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Two limiting forms of (30) are of interest. First, when U ,  the velocity of con- 
vection of the forcing region, supposed of dimension L, is small compared with 
PL2, then the form (30) of $ as x - Ut -+ - og becomes approximately 

This agrees with the solution of Sverdrup’s classical steady-flow problem, that is, 

P ( a W 4  = -c(x,y), (32) 

provided that $ be taken zero to the east of the disturbance. Often elaborate 
boundary-layer arguments have been used to justify this boundary condition on 
$ (S, $5), but the present work shows it as an immediate consequence of proper 
application of the radiation condition. 

Secondly, when U is large compared with PL2, equation (30) differentiated 
with respect to y gives approximately 

which with expression (27) for c means simply 

stating that water, uninfluenced by the beta-effect, has been accelerated directly 
by the force X ( x -  Ut, y) per unit mass as the forcing region passes it. Water 
south of the centre of the depression is dragged eastward behind it, and water 
north of the centre is pushed westward. In  this case, the group velocity Plk2 of 
disturbance is small compared with U ,  so that only the water which the disturb- 
ance has actually passed over can be affected. 

By contrast, in the case U < pL2, the result (31), which in terms of u and X 
can be written 

will hold even far to the west of where the depression may have originated, since 
the group velocity is much greater than U .  When expression (35) is valid, it  is 
smaller than (34), and vice versa; whereas when U and PL2 are of the same order, 
the expression 

obtainable from (30) by differentiating with respect to y and then integrating by 
parts, shows that u again normally falls below the limiting value (34). 

Probably the most:interestingconclusion from this section:is that, if the problem 
of steady wind-driven ocean currents is regarded as a limiting case of currents 
driven by a travelling forcing effect as the speed of travel tends to zero, then 
Sverdrup’s solution with no disturbance to the east is obtained. (The conclusion 
is unaltered for a westward-moving forcing region, because the limitation (25) to 
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wave-numbers less than J(P/ U )  ceases to be restrictive as U -+ 0.) This boundary 
condition is appropriate, therefore, for more fundamental reasons than have 
usually been given; physically, because group velocity is westward for north- 
south wave-numbers. 

The results of this section are not much changed when the tidal term f 2/gH for 
an ocean of constant depth H is added (S, (46)) to Z2+m2 in (22), (23) and (24). 
The critical wave-number for a westward-moving forcing effect becomes 

P f2 ( u - 8 )  * (37) 

The curves in figure 2 are slightly modified, to pass through the origin at a small 
positive angle 

to the m-axis. Accordingly, the low wave-number disturbances are to be found 
a t  this small positive angle to the westward direction. These changes are not 
really important provided that U is small compared with 

= (11 m/s)  (g) (Hinkm), 
f (39) 

which is likely to be the case except perhaps at rather high latitudes 8, or small 
depths H .  

5. Rossby waves excited by a travelling transient disturbance 
In  this section the generation of Rossby waves in a beta-plane ocean by travel- 

ling forcing effects of transient character is studied. As in $4, the effect of a tidal 
term is considered only at the end of the section. 

Longuet-Higgins (1965 b)  gave an excellent account of transient currents 
generated (i) by a stationary transient forcing effect, and (ii) by a transient 
forcing effect that moves ‘very rapidly’, that is, much faster than the group 
velocity of the waves produced. The present solution is valid not only in these two 
extreme cases, but also for those intermediate speeds of travel which are often 
important in practice. It is complementary also in another way to the work of 
Longuet-Higgins (1965 b) ,  which is concerned with instantaneous impulse-type 
(delta-function) forcing effects, so that waves of all frequencies, however high, 
can be produced. Here we consider disturbances of non-zero duration, which 
normally will not excite waves of very high frequency. We shall see that their 
exclusion makes significant qualitative differences to the conclusions. 

The wind-stress curl, then, has the formf(r - Ut, t )  as in $3, where the function 
f(r ,  t )  vanishes except in a h i t e  region of r and within a finite time interval, and 
can be expressed as a Fourier integral as in (16). We shall assume such smooth 
variation of f(r, t )  that its Fourier transform F ( c ,  E )  is small for frequencies 
c exceeding a frequency el characteristic of the disturbance, or for wave-numbers 
k exceeding a characteristic wave-number kl. Here el might be about 10 divided 
by the ‘duration’ T of the disturbance, since, for example, a Gaussian transient 

47 Fluid Mech. 27 
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proportional to exp [ - 10(t/T)2], with amplitude 8 % of its maximum at t = & i T ,  
has Fourier transform less than 8 % of its maximum for cr > lO/T. 

For each frequency c0 less than crl, the waves generated are those specified by 
the curve S(cro) in the wave-number plane. This curve, which if the direction of 
travel makes a positive angle a! with the eastward direction has the equation 

[cro++(Z~~~a+msina)](Z2+m2)+/3Z = 0 (40) 

by (9) and (22), is drawn in figure 3 for various cro when a! = 30". This particular 
case was chosen because it appeared in $ 4  that steady forcing effects when a! 
is relatively small can generate Rossby waves only in a limited sector trailing 

FIGURE 3. Wave-number curves for Rossby waves generated on a beta-plane ocean by an 
oscillatory forcing effect travelling with uniform velocity U in a direction making a 
positive angle 30" with the eastward direction. The number marked on each curve is the 
value of L = go/,/( U p ) ,  where go is the frequency. 

behind the disturbance, and it is desirable to find out (without limitation to the 
over-special case a = 0) whether this conclusion remains valid for transient 
forcing effects travelling in directions typical of temperate-zone conditions. 

It is seen that the shape of S(cro) depends critically on the value of a frequency 

(41) 
parameter 

say. It is close to the form S(0)  used in $ 4  to investigate steady forcing effects 
only when L is small. Big changes of form occur for values of L around unity, 
and for 

(here L > 1.932) the curve splits into two. For larger values of L, the two parts 
approximate closer and closer to a straight line and a circle. For a non-travelling 

&4 UP) = L, 

(42) L > 2 cos *a 



Waves generated in dispersive systems 739 

forcing effect (U+ 0, L -+ co) the circle alone is left (as would be expected from 
the work of Longuet-Higgins 1965b). 

When vo = vl, the highest frequency characteristic of the forcing effect, values 
of L satisfying (42) may be found for disturbances of relatively short duration. 
For example, a forcing effect of duration 4 days travelling at 10 mls at  latitude 
45" has L = 2-5 for no = vl. However, all frequencies below v1 will in general 
be significant, and an important zero-frequency component is in particular 
present if the time integral of the disturbance is non-zero. All the values of L in 
figure 3 are likely to be found together, therefore. 

Figure 3 shows that for the lower values of L, around 0 to 1.0, the currents 
generated trail once more in a, narrow wedge behind the forcing region, but that 
for the higher values of L Rossby waves all round it may be generated. However, 
only waves of very small wave-number k = J(Z2 + m2), say with k J( U / P )  less than 
about 1, will be found all round it, physically for the same reason that led to the 
condition (25). For the example just quoted, this would limit such waves to those 
of length exceeding 5000 km. For a different example, with a forcing effect of 
duration 14 days travelling at 4m/s at latitude 45", the maximum value of L 
would be 1 and all disturbances would be trailing. 

A still more pronounced tendency for the wave pattern to trail exclusively 
behind the disturbance is found when gravity effects are taken into account, as at  
the end of $3, by adding a term f2 /gH in equation (22). This term must be added 
to l 2  + m2 also in (40), which modifies the curves in figure 3 mainly near the origin, 
where Z2+m2 is small. The modification to the curve L = 0, already noted in 
$4, is that it  passes through the origin at the small positive angle (38) to the m- 
axis. The other curves, however, cease to pass through the origin, where they are 
displaced, in fact, towards the left. 

For the larger values of L, the new term actually reduces the size of the nearby 
circular branch of the curve, somewhat as found by Longuet-Higgins (1965a, b) 
with U neglected. It approximates then to the circle 

with radius 

and vanishes altogether when go exceeds 

'!%!!!&? = (0.7 cot 8) (depth in km)*(days)-l, 
2.f 

(45) 

or when L exceeds (PgH/4f2U)4. In the first example quoted above, the values of 
L for which the waves were not trailing, namely 1 to 2.5, all correspond to values 
of vo which already exceed the limit (45) for depths less than 2 km; and, even 
for a depth of 4 km, only a, minimal amount of wave energy, with L between 1 
and 1.5, could be found ahead of the forcing region. 

47-2 
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6. Surface gravity waves generated by a travelling oscillating dis- 
turbance 

Among the best-known wave combinations due to travelling forcing effects is 
Kelvin's pattern of surface gravity waves, set up by a ship in steady motion, and 
shown by him to be confined within a wedge of semi-angle 19go. The method of 
this paper is now used to study surface gravity waves generated by a travelling 
disturbance that is not steady but oscillatory with frequency go, so that Kelvin's 
ship waves are the special case a, = 0. 

FIGURE 4. Wave-number curves for surface gravity waves, generated by an oscillatory 
forcing effect with various frequencies uo, travelling with velocity (U ,  0) over deep water. 
The numbers 0, 0.125, 0.25, 0.5 and 1.0 on the curves give the values of Uu,/g in each case. 
On certain branches of the curves, which correspond to a wedge of waves, points of in- 
flexion (corresponding to waves on the boundary of the wedge) are marked by a spot. 

This problem, like some others studied in this paper, has been treated by 
various writers, with very different results. Our object here is to show that the 
correct placing of the waves follows immediately from the general theory of tj 2, 
which, in fact, supports the work of Eggers (1957) and Newman (1959) and others 
against that of Sretensky (1954). 

For this two-dimensional system the dispersion relation takes the form (3)) 

(46) 
where P(rT,Z,m) = (r4-92(P+m2). 
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Hence equation (9) for the surface X(uo) becomes 

(uo + UZ)4 = g 2 ( P  + m2), (47) 

where the forcing effect has frequency uo and travels with velocity ( U ,  0). 
The surface X(uo) is shown in figure 4 for various values of the ratio Ugo/g. 

Kelvin's ship waves have wave-numbers on X(O), and fill a backward-trailing 
wedge of semi-angle 194" because the arrows on S(0) (pointing towards X( +6)) 
do so. When Uu,/g takes small positive values (for example, 0.125) the two sheets 
of which X(0) is composed are in #(ao) both displaced to the left. Certain waves 
with larger wave-numbers, associated with the left-hand sheet, fill a narrower 
wedge than before, and other waves with smaller wave-numbers, associated with 

I I I I 1 
0 0 5  1 .o 1.5 Uu& 2 0  2 5  

FIGUFCE 5. Illustrating how the semi-angles of the wedges within which the waves re- 
presented in figure 4 lie change with Ua,/g. 

the right-hand sheet, fill a wider wedge. (The point of inflexion, marked on each 
curve, corresponds to waves on the boundary of such a wedge.) X(uo) includes, 
in addition, a small oval region involving very small wave-numbers (of the order 
of ri/g), and, if the forcing effect has components with such wave-numbers, then 
the associated waves are disposed in all directions around it. 

Transition to a new regime occurs at Uuo/g = 0.25 (where S(uo) crosses itself), 
beyond which there are only two branches of S(u,), and the waves associated 
with each lie within a certain wedge. Figure 5 plots the semi-angles of the wedges 
within which the waves associated with the left-hand and right-hand branches 
lie as a function of Uuo/g. (For Uuo/g < 0.25, a value of 180" is also included, to 
represent the fact that waves associated with the small oval branch are found in 
all directions around the forcing region.) 
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One interesting conclusion is that waves are found outside the Kelvin wedge, 
associated with the steady part of any composite travelling disturbance, only for 
frequencies cr, satisfying Ua,lg < 1.63. Another is that waves are found in front 
of the obstacle (that is, in the forward-facing semicircle) only if Ua,lg < 0.27. 

7. Internal gravity waves generated by a vertically moving steady dis- 
turbance 

Gravity waves in a uniformly stratified medium are next discussed. Generation 
by a vertically moving steady disturbance is of particular interest owing to the 
importance in certain stably stratified regions of the atmosphere of the pheno- 
menon known as a ‘thermal’, that is, a rising localized region of hot air. The 
question of what gravity waves, if any, a ‘thermal ’ generates may be treated 

FIGVRE 6. Wave-number surface for internal gravity waves generated by steady vertical 
motion of an obstacle with velocity (0, 0, 77) through a uniformly stratified medium with 
Vaisala-Brunt frequency N. 

approximately by regarding i t  as a travelling steady disturbance (see Warren 
(1960)’ who gave an excellent analysis of wave-making resistance on this assump- 
tion). Another reason for interest in this case is that experiments suitable for 
detailed comparison with theory have been made by Mowbray (1966), using a 
tank of uniformly stratified salt solution. 

With the z-axis vertical, the vertical component of velocity w in gravity waves 
satisfies 

where N is the Vaisalii-Brunt frequency. Additional terms significant only if the 
wavelength is comparable with the scale height have been omitted from (48), 
and in what follows a uniformly stratified medium with constant N will alone be 
considered. Accordingly, in this three-dimensional problem, 

P(cr, E ,  m, n) = cr2(Z2 + m2 + n2) - N2(P + m2), (49) 

and for steady forcing effects travelling with velocity (0, 0,  U )  equation (9) with 
a, = 0 for the surface of revolution S(0) becomes 

(50) U2nZ( 12 + m2 + n2) = N2( 12 + m2). 
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Figure 6 gives the surface (50) in meridian section, with the arrows aimed to- 
wards S( + 6). This is a problem where all waves trail behind the forcing region. 
They are found, in fact, only below a rising obstacle, or above a falling one. Shorter 
waves, with wave-number comparable with NIU or greater, are found close to 
the path of the obstacle, but longer waves, with wave-number small compared 
with NIU, are found (if the forcing effect includes components with those wave- 
numbers) at places whose radius vector from the forcing region makes all angles 
up to 90" with the path. 

FIGURE 8. Shape of a surface of constant phase for internal gravity waves generated by 
steady vertical motion of a sphere (shown at top of diagram) through a uniformly stratified 
medium. Shape is normalized so that the points on the lines through the obstacle making 
an angle tan-l (a) with the vertical are in the ringed positions. Curve: theoretical shape. - -  
Points: experimental results from figure 7 and from another similar photograph (Mowbray 
1966). 

This is a case where the shapes of wave-crests (surfaces of constant phase) are 
well worth calculating, for comparison with Mowbray's experimental observs- 
tions. Figure 7 is a schlieren photograph of a sphere being raised at uniform 
velocity through uniformly stratified salt solution. The loci of maximum dark- 
ness are surfaces of constant phase (in fact, nodal surfaces with respect to density). 
The shape of several of these was measured and plotted on a single diagram 
(figure 8) after being scaled so that the points at an angle tan-l (a) behind the 
centre of the sphere (ringed in figure 8) are the same for each. 
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The curve in figure 8 is the theoretical surface of constant phase, given by 

( U2n2 - N 2 )  1, ( U2n2 - N 2 )  m, V2(l2 + m2 + 2n2) n 
equation (15) as 

A (  N2(12 + m2) 1)  (51) 

where I ,  m, n satisfy (50).  It was plotted in terms of the parameter UnIN as 

- (Un/N). 
N,/(z2+y2)  - (1  - Un/N)a Nz 2 

AU - (Un/N)2 ’ A U i = m N  

The agreement with the experimental points is seen to be good. 

8. Motion of obstacle along axis of rotating fluid 
Various special geometrical features of the surface S(go), as discussed in $ 2  

above, and in more detail by Lighthill (1960)) can call for special treatment. One 
not there mentioned, and yet arising in a problem that has been studied at great. 
length in the literature of rotating fluids, as well as being of independent interest, 
is the case when part of X(cro) is twice covered; that is, when the surface contains 
two coincident portions. The difficulties experienced by many writers on the 
subject now to be described can be partly related to this rather unusual circum- 
stance. 

Through a large body of homogeneous fluid, in uniform rotation with angular 
velocity Q, an obstacle moves with constant velocity U along the axis of rotation, 
which is the z-axis. As explained in $2, the motion at large distances from the 
obstacle would be expected to constitute a small perturbation of the state of 
uniform rotation, and therefore ( S ,  $6) to take the form of inertial waves, in 
which all components of the fluid velocity v (in a rotating frame of reference) 
satisfy 

(532 

Comparison with (1) shows that 

P ( g ,  I ,  m, n )  = g2(12 + m2 + n2) - 4Q2n2 (54) 

in this problem. For a steady disturbance (go = 0)) equation (9) for the wave- 
number surface becomes 

U2n2(Z2 + m2 + n2) - 4Q2n2 = 0. ( 5 5 )  

The zero-frequency wave-number surface X(0) given by (55 )  is shown in figure 
9, and has evidently a strong resemblance to the Rossby-wave case illustrated in  
figure 1. It includes the sphere 

12+m2+n2 = (2Q2/U)2, (56) 

just as the circle (24 )  was included in the Rossby-wave case. Wave-numbers on 
this sphere correspond to waves of uniform length n-U/Q and arbitrary direction. 
The fact, at first sight surprising, that any such wave must remain stationary 
with respect to the moving disturbance, is well known to students of the literature, 
as also is their combination in various standard normal modes, e.g. of Bessel- 
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function type. As in figure 1, the directions of the arrows on the sphere are such 
that these waves are found only behind the forcing region. 

In a manner equally reminiscent of figure 1, the surface S( 0 )  in figure 9 includes 
a straight portion, here the plane n = 0. An essential point of difference, however, 
is that the surface S(0)  defined by the quartic equation ( 5 5 )  consists of the sphere 

FIGURE 9. Wave-number surface for inertial waves generated by steady axial motion o 
an obstacle with velocity (0, 0, U )  through fluid rotating at angular velocity (0 ,  0, a). It 
consists of a sphere and two coincident planes. 

(56 )  and the plane taken twice: it is a sphere and two (coincident) planes. It may be 
expected, therefore, that arrows along the appropriate normal must be drawn on 
both planes, and that the normal directions appropriate to each plane may or 
may not coincide. 

The actual directions for waves with n (and cr) zero, that is, for disturbances 
independent of z (and t ) ,  are shown in figure 9. Disturbances whose transverse 
wave-number ,/(P + m2) exceeds 2Q/U trail behind the obstacle, because the 
arrows on both planes point in the negative z-direction, and those for which it is 
less than 2QIU are found partly behind and partly in front, because the arrows 
on each plane point in opposite directions. This fact can be deduced in various 
ways, of which perhaps the easiest is actually to draw S ( r )  for various g as in 
figure 10 below, and to observe that for small positive g the plane n = 0 splits 
into two sheets, which lie on different sides of it where 

J(Z2+m2) < ZQlU, (57) 

and otherwise lie both below it. For a more analytical deduction, see below. 
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The physical explanation of the result is that these waves with zero phase 
velocity, whose stationary crests are parallel to the axis of rotation, have a group 
velocity Z Q /  J(12+m2) directed along the axis of rotation (either up or down it). 
This exceeds U (so that forward influence becomes possible) if and only if (57) is 
satisfied. The waves propagate (for the inviscid fluid here treated) without 
attenuation, because the associated part of the wave-number surface is plane. 
After a long enough time, those for which (57) is satisfied extend arbitrarily far, 
both ahead of and behind the obstacle, in a ‘Taylor column’. 

Admittedly obstacles whose transverse dimension, say a, is small (so that the 
Rossby number 

is large) cannot significantly excite waves satisfying (57). But, as the ratio (58) 
decreases, transverse disturbances satisfying (57) can increasingly be excited by 
the obstacle. The disturbance that extends ahead of the obstacle is then the 
transverse disturbance created by the obstacle, modified as in 54 by a ‘low-pass 
filter ’ passing only wave-numbers below Z Q /  U. 

In  contrast with $4, however, the disturbance that extends behind the obstacle 
is not subjected merely to the complementary high-pass filter; it  includes, in fact, 
also some low-wave-number terms. To obtain an estimate of their magnitude, 
the method leading to equation (1 1) cannot be used without change because the 
integral to be estimated has a double-pole singularity on doubly covered portions 
of the wave-number surface. The modifications to the method that are needed are 
as follows. 

U/2Qa (58) 

With P as in (54) and u0 replaced by is, equation (8) becomes 

and the problem is to estimate the inner integral when Iz-  Utl is large. When E 

is positive but very small, the double pole a t  n = 0 is split into two simple poles at 

is is 
Z Q  

n, = and n2 = 

J(FfmP)+ TI 2Q u 
.J(Z2 + m2) 

is is 
Z Q  

n, = and n2 = 

J(FfmP)+ TI 2Q u 
.J(Z2 + m2) 

When (57) is satisfied these are on opposite sides of the real axis, so that by 
Jordan’s lemma there is a contribution to the inner integral from the pole n = n, 
when z - Ut is positive and from n = n2 when it is negative; but, when (57) is not 
satisfied, both n, and n2 have negative imaginary parts and so there is no contribu- 
tion at  all for z - Ut > 0; this agrees with the direction of the arrows in figure 9. 

More precisely, when (57) is satisfied, calculation of the residues at the poles 
gives a contribution to the inner integral in each case of 

7r _ -  F(l,m,n)exp{in(z- Ut)}, 
2 Qs J( Z2 + m2) 

where n = n, for z - Ut > 0 and n = n2 for z - Ut < 0. When (57) is not satisfied, 
both contributions appear for z - Ut < 0 (and none for z - Ut > 0) but that from 
n = n, has its sign changed. 
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Particularly when (57) is satisfied, there is apparently a difficulty in taking the 
limit of expressions (61) as e+O. The difficulty disappears, however, when we 
realize that in this problem, unlike the Rossby-wave case (see footnote in § 5 ) ,  F 
is necessarily zero for n = 0. To see this, we note that the basic equation (53)  was 
obtained ( S ,  56) by applying the operation (ajat) curl to Helmholtz’s equation 
for the vorticity in its linearized form S, (23). Hence, if Helmholtz’s equation is 
transformed by a travelling forcing effect into a form with a forcing term, 

a av 
at az 
- curlv = 2Q- + g ( x , y , z -  Ut ) ,  

equation (53) becomes 

The right-hand side of (63 )  can be written f(x, y ,  z -  Ut) ,  if 

f = (a/&) ( U  curl g - zag), (64)  

whose Fourier transform F(1, m, n) evidently contains a factor n and so vanishes 
at n = 0. 

The limit of (61) (which represents, as we saw, the inner integral in the ex- 
pression (59) for #) is found simply, therefore, by de 1’Hdpital’s rule, and is 

with the upper sign in the limit for n = n, and the lower in the limit for n = n2. 
Disturbances are found ahead of the obstacle only when (57)  is satisfied, and 
furthermore are only the n, disturbances, for which the negative sign taken in 
(65 ) .  We see that such disturbances are progressively amplified as . J ( Z 2  + m2) in- 
creases towards the limit (57 ) )  even though no disturbance at all appears ahead 
of the obstacle beyond that limit. 

The physical reason why a forcing effect of given axial extent (represented by 
its first moment (aF/an),=,) can excite a forward-moving wave component most 
powerfully when its group velocity only slightly exceeds the speed of travel of 
the forcing effect is that the time available before the wave component escapes 
from the forcing region is then greatest. Increase of (65)  to extremely large values 
would be restricted, however, by dissipation, by non-linearity, or by finiteness of 
duration of the forcing effect. 

For low values of the Rossby number (58) ,  the obstacle can generate substantial 
disturbances satisfying (57 ) .  In  the steady state these will be found, as (65 )  
indicates, with a greater amplitude ahead of the obstacle than behind it, in 
agreement with the experiments of Taylor (1922, 1923) and Long (1953). Al- 
though theoretical work on this problem took time to catch up with experiment, 
the need for such a disturbance ahead of the obstacle was clearly argued by 
Stewartson (1958). 

When the fluid, instead of being unbounded, is contained within a circular 
cylinder of radius b, whose axis is the axis of rotation along which the obstacle 
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FIGURE 10. Wave-number surfaces for inertial waves generated by axial motion, with 
velocity (0, 0, U ) ,  of an oscillatory forcing effect with various frequencies go, through fluid 
rotating at  angular velocity (0, 0, Q).  The numbers 0, 0.4, 1.0 and 2.5 on the curves give 
the value of ao/2i2 in each case. - - - - - -, asymptotes. 

moves, the spherical waves satisfying (56) have to be combined in axisymmetrical 
normal modes (wave-guide modes of Bessel-function type) satisfying the boundary 
condition on the cylindrical surface. The theory states, in agreement with the 
experiments of Long (1953), that these waves appear only behind the obstacle. 
However, a disturbance independent of z is found ahead of the obstacle provided 
that disturbances with wave-numbers satisfying (57) can be combined into a 
solution satisfying the boundary condition. This requires that 

U/2!2b < j,' = 0.261, 

where j, is the least positive zero of the Bessel function J, ,  in agreement with 
arguments of Trustrum (1964). 

Nigam & Nigam (1962) applied the methods of Lighthill (1960) (essentially 
those of this paper) to the more general case of waves made by a periodic forcing 
effect with frequency vo moving along the axis of rotation in unbounded fluid. 
For example, an oscillating obstacle would make such waves, normally in addi- 
tion to those that would be generated by its steady motion. 

The surface S(ao), which is now singly covered, has the equation 

(go+- Un)2(P+m2+n2)-4!22n2 = 0 ,  (66) 
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and figure 10 shows its shape for various values of the ratio ao/2Q. When 
g0/2Q < 1, the arrows indicating directions in which waves will be found show 
that they are still present ahead of the obstacle but that a cone of semi-angle 
sin-1(ao/2Q) is empty of such waves. Furthermore, the limits on their wave- 
number are even more restrictive than in the zero-frequency case (57). By con- 
trast, waves of larger wave-number, corresponding to the two sheets of the 
wave-number surface below the plane n = 0, trail behind the obstacle inside a 
cone, also of angle sin-l (ao/2!2). 

When a0/2Q > 1 there are only trailing waves, again confined within a cone. 
The point P on the wave-number surface corresponds to the waves found on the 
boundary of this cone. Nigam & Nigam (1962) give the surfaces of constant phase 
(reciprocal polars of S(ao)) for particular values of the ratio ao/2Q. These have 
cusps corresponding to any point of inflexion (such as P )  on S(o,). 

9. Motion of obstacle perpendicular to axis of rotating fluid 
The wave systems discussed in 994, 5 and 6 were two-dimensional, while 

three-dimensional wave systems were studied in $97 and 8 only for problems 
with axial symmetry. We conclude the paper, however, by discussion of a genuine 
three-dimensional problem. 

An obstacle moving steadily at small Rossby number perpendicular to the 
axis of a uniformly rotating homogeneous fluid (rather than, as in $8, along it) 
can, as is well known, set in motion a ‘Taylor column’ of fluid, approximately 
cylindrical in shape with generators parallel to the axis, and moving with the 
obstacle at right angles to the axis. Experimental work on this subject has used, 
on the whole. somewhat limited volumes of fluid, and it remains uncertain how 
far along the axis the Taylor column extends in practice. 

From the theoretical point of view, two limitations on its extent would be 
expected, viscous (non-zero Ekman number) and inertial (non-zero Rossby 
number). In  different situations either of these may dominate. Morton (1966) 
has studied the limitation due to viscosity for zero Rossby number. Here the 
limitation due to non-zero Rossby number will be studied for an inviscid fluid. 

For non-zero Rossby number it cannot be supposed that the Taylor column 
extends all the way to infinity, and indeed at very large distances from the body 
disturbances must be supposed to become small, and therefore subject to linear 
analysis. Moreover, even if this assumption were false, the linear analysis of the 
far field which follows would, according to the precedents of 994 and 8, be ex- 
pected to show up any possible propagation without amplitude reduction. 

Accordingly, the near field is regarded as a travelling steady forcing effect 
which, in the far field, generates small disturbances. These must take the form 
of inertial waves, for which P ( g ,  I, m, n) is given by (54). If the velocity of travel 
is ( U ,  0,O) then equation (9) for the wave-number surface S(0) appropriate to a 
steady disturbance takes the form 

U212(12 + m2 + n2) - 4Q2n2 = 0. 

Figure 11 indicates the shape of the surface (67) by plotting the contours 
m = constant in the (I, n) plane. The arrows normal to the surface pointing 
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towards S( + 6) are easily shown to trail (as in 9 7) behind the direction of motion 
of the forcing region; their projections on to the (1,  n )  p1ane:are showniin figure 11. 

0.5 0.5 

I 

0:5 0.5 
FIGURE 11. Wave-number surface (illustrated by means of contours of constant m in the 
(1,n) plane) for steady transverse motion of an obstacle with velocity ( U ,  0, 0 )  through 
fluid rotating at  angular velocity (0, 0, a). Contours for constant values 0, 0.5 and 1 
(marked on the curves) of the ratio Uml2Q are shown. 

An obstacle of dimension a whose Rossby number, given by (58), is small 
generates waves whose characteristic wave-number lc satisfies 

0 < Uk/ZSZ < E ,  (68) 

where B is a typical maximum Rossby number of the waves generated and would 
be expected to be proportional to (58). Accordingly, only the part of figure 11 
which lies within a sphere of radius B and centre the origin corresponds to waves 
which that obstacle can generate. 

Within that part of the surface, the arrows all make a small angle with the 
z-direction, in agreement with the idea that to a first approximation the disturb- 
ance does not vary with z (as in the TayIor column). However, by studying their 
departure from the z-direction, we can investigate quantitatively how the 
disturbance trails behind the obstacle. 
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It follows from (61) and (62) that 

and using the fact that both these quantities are small the direction of the normal 
to (67) may be approximated as 

Uk (-2 (#+8cos2$), --((Bsin2$), 21R 

where q5 is defined by the equations 

For fixed Uk/2Q the directions (70) fill two cones whose axes have directions 
( - #( Uk/21R), 0,  f 1) and whose semi-angles are Q( Ukl21R). 

FIGURE 12. Transverse steady motion of an obstacle with velocity (77, 0, 0) through fluid 
rotating at  angular velocity (0, 0, a) produces at large axial distances z from the obstacle 
a region of waves (plain curves) whose cross-section is as shown. Dotted lines: loci of 
constant wavelength. 

Waves are found, then, only in such cones trailing behind the obstacle, where 
Uk/21R takes all values from 0 to e. The region filled by such cones, where waves 
are found, is shown (in cross-section by a plane x = constant) in figure 12. The 
dotted circles (cross-sections of the above-mentioned cones) are loci of fixed 
wave-number k .  

Within the region in figure 12, the shape of the surfaces of constant phase 
is given parametrically by equation (15), with go = 0. This gives 

and a few such surfaces, with equal phase :difference between each, are shown 
(again in cross-section by a plane z = constant) in figure 12. Those that extend to 
the straight lines [ y/xl = 2-8, which form part of the boundary of the region with- 
in which waves are found, have cusps thereon. 



752 M .  J .  Lighthill 

Only order-of-magnitude estimates can be given concerning the matching of 
the far-field behaviour depicted in figure 12 with the near-field ‘Taylor-column’ 
behaviour. The cross-section in figure 12 has dimension of order and can be 
expected to match with a Taylor column whose cross-section has dimension u 
in some transition region situated around 121 = U / E .  This indicates that Taylor 
columns extend for a distance of order the dimension of the obstacle divided by 
the Rossby number (except in circumstances when viscosity is large enough to 
limit them to a smaller length). 

The author gratefully acknowledges Mrs N. A. Lighthill’s help with the 
computations. 
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FIGURE 7 .  Schlieren photograph (Mowbray 1966) of waves generatod by a spherc of dia- 
meter 2.54 cm rising vertically a t  a speed of 1.02 cm/s in a solution of  sodium ckloridc 
whoso density falls with height at  a rate of 0.0020 gm/cm3 per cm. 

LIGHTHILL (Facing p. 752) 


